DEPARTAMENTO DE CS. GEOLÓGICAS - FCEyN- UBA

Programa Analítico de Hidrogeología (Básica)

Profesor Adjunto Interino (Área Exógena): Dr. Adrián Silva Busso

Carga Horaria: 96 horas Modalidad: Optativa

Periodo: Primer cuatrimestre

Fecha: 2013

OBJETIVOS

El objetivo principal del curso es brindar una formación básica en lo que respecta a los aspectos conceptuales de la disciplina. Esto involucra el estudio del agua en medios superficiales y subterráneos. En lo que respecta a los alumnos, está previsto que:

- Adquieran los elementos básicos para la compresión integral de la hidrogeología.
- Adquieran los elementos de análisis y aspectos básicos de la investigación en recursos hídricos.
- Aprendan los aspectos básicos de las metodologías aplicadas en la investigación y preservación del recurso hídrico en conjunto.

El curso ha sido diseñado como una formación complementaria orientada a los alumnos de grado interesados en las investigaciones y temáticas hídricas buscando una formación que lo capacite para su futura actividad profesional o como base de un perfil orientado a la investigación.

METODOLOGÍA DE ENSEÑANZA

El curso comprenderá el dictado de clases teóricas y prácticas semanales, considerando el tiempo destinado a un cuatrimestre base, distribuidas en horas de clases teóricas, dos turnos de prácticas (en función de la disponibilidad de JTP) y laboratorio en ordenador.

En las clases teórico se abordarán los conceptos teóricos fundamentales de la disciplina y en las practicas y laboratorio de informática las aplicaciones prácticas de la misma. En ellas se plantearán trabajos de individual y grupal.

La asignatura se complemente a con una salida al campo de perfil teórico - práctico (al Instituto Nacional del Agua) que implica la realización, por parte de los alumnos, de tareas de campo específicas de forma grupal y un informe por parte de forma individual que complementa los prácticos.

La asignatura enfatizará en la utilización de programas computacionales en la resolución de las aplicaciones prácticas planteadas, y procurará vincular a la actividad profesional y la investigación las tareas a realizar.

DESCRIPCIÓN

UNIDAD 1. INTRODUCCION Y GENERALIDADES

El agua en el Planeta Tierra. Distribución de la hidrósfera y el concepto de recurso hídrico. Definición, su relación con otras ciencias. Antecedentes históricos. Evolución del conocimiento hídrico y sus aplicaciones a lo largo de la historia. Pensadores y fundadores de la Hidrología e Hidrogeología en el Mundo y en Argentina. Postulados fundamentales en recursos hídricos e interrelación disciplinar. Introducción a la Hidrología e Hidrogeología

UNIDAD 2. EL CICLO HIDROLOGICO

Definición del balance hidrológico. Desarrollo esquemático del ciclo hidrológico. Análisis de sus términos y variaciones. Instrumentos de medición de las variables meteorológicas y validación. Validez espacial de las variables meteorológicas. Circulación general en la atmósfera. Análisis cuantitativo de las precipitaciones, Escorrentía, Evapotranspiración e infiltración en el marco de los estudios de balance. Validación de datos de precipitaciones (pluvial y nívea) con fines de su empleo en balances. Tipos de escorrentía (superficial, encauzada, epidérmica, subglaciaria, etc.). Métodos de determinación de la Evapotranspiración potencial y real (Turc, Thornthwaite, Penman). Determinación de la Infiltración potencial. Métodos de medición en el campo. Relación con tipos de suelo, percolación y capacidad de campo. Introducción al estudio de la zona no saturada, movimiento vertical del agua, franja capilar. Características hidráulicas en las zonas: edáfica, intermedia, capilar y saturada.

UNIDAD 3. CONCEPTOS SOBRE HIDROLOGÍA

El concepto de cuenca hidrológica: definición y caracterización. Dimensionamiento cuantitativo de cuencas. Tipos de régimen fluvial. Conceptos hidrodinámicos, balance energético, velocidades y caudales fluviales. Flujos laminar y turbulento. Ciclo de Hoyt.Flujo uniforme y variable. Tipos de ríos por su régimen y en relación con el agua subterránea. Medición de caudal, determinación de velocidades y secciones. Instrumental y técnicas de medición para determinar caudales (molinetes, reglas, limnigráfos). Diseño de estaciones de aforo. Series de datos, Hidrogramas e hidrogramas unitarios Hidrograma e hidrograma unitario. Yetograma. Aspectos hidrológicos en climas fríos y alta montaña.

UNIDAD 4. CONCEPTOS FUNDAMENTALES SOBRE HIDROGEOLOGÍA

El agua subterránea en los diferentes tipos de rocas. Definición y características generales de los acuíferos y ocurrencia de la misma (isotropía, anisotropía,

homogeneidad, heterogeneidad). Conceptos de porosidad total, efectiva y factores que la determinan. Ley de Darcy, permeabilidad y conductividad hidráulica. Parámetros hidráulicos para la caracterización de acuíferos. Parámetros comunes en diferentes granulometrías de rocas clásticas. Fundamentos básicos de los modelos de flujo de agua subterránea, flujos libres y bajo presión. Flujos radiales hacia pozos. Los conceptos de niveles estático y dinámico, piezometría y sus aplicaciones. Hidrodinámica subterránea. Relación agua superficial y agua subterránea. Curvas equipotenciales (isofreáticas e isopiécicas), construcción y propiedades. Red de flujo, elaboración y clasificación por su forma en planta y perfil. Identificación de ámbitos de recarga y de descarga. Interpretación hidrodinámica cualitativa y cuantitativa. Caracteres y comportamiento del agua subterránea en áreas montañosas, pedemontanas y llanas de baja pendiente. Valles intermontanos. Médanos y dunas costeras. Interfase agua dulce-salada. El agua subterránea en rocas cristalinas, basálticas, calcáreas y granulares. En depósitos aluviales, eólicos, marinos y glaciales. Influencia del clima.

UNIDAD 5. BASES DE DATOS Y CARTOGRAFÍA HIDROGEOLÓGICA

Censo de Pozos y toma de datos hidrogeológicos. Instrumental básico en reconocimientos hidrogeológicos. Nivelación y georreferenciamiento. Validación de la información. Base de datos en Hidrogeología. Sistemas de Información Hidrogeológica. Mapas piezométricos: confección y análisis. Mapas de isocurvas: diversidad y empleos. Conceptos del mapeo hidrogeológico. Normas de la AIH. Mapas temáticos en hidrogeología. Aplicaciones en SIG y alcances del uso de imágenes satelitales. Clasificación y cartografía empleada para el cálculo. Magnitud de la recarga. Explotación y sobreexplotación. Manejo de acuíferos.

UNIDAD 6. MÉTODOS GEOFISICOS DE PROSPECCIÓN DEL AGUA SUBTERRÁNEA

Introducción a los métodos de prospección geofísica. Diferentes características y aplicaciones para la búsqueda de agua subterránea. Aplicaciones prospectivas con métodos gravimétricos y magnetométricos. Aplicaciones prospectivas con métodos sísmicos. Aplicaciones prospectivas con métodos magnetotelúricos y audio magnetotelúricos. Fundamentos de la prospección geoeléctrica con corriente contínua. Tipos de tendidos para diferentes objetivos prospectivos. Instrumental y metodología de obtención de datos en el campo. Técnicas de interpretación en gabinete. Aplicaciones específicas. Aplicaciones prospectivas con métodos de corriente alterna, polarización inducida y electrocinéticos. Georadar: fundamentos, tipos y aplicaciones en hidrogeología.

UNIDAD 7. CONCEPTOS BÁSICOS SOBRE HIDRÁULICA DE ACUÍFEROS

Reacción y comportamiento de diferentes litologías. Tipos hidráulicos de acuíferos.

Tipos de ensayo para diferentes problemas hidráulicos. Instrumental necesario para su ejecución. Ejecución y toma de datos en el campo y boca de pozo. Métodos de interpretación de los ensayos de bombeo. Métodos de régimen permanente (Thiem y Dupit). Métodos de régimen variable (Theis, Jacob, Dupuit, Hantush, Bulton y Neuman). Métodos de resolución e Interpretación de parámetros hidráulicos (Transmisividad, permeabilidad, y almacenamiento, etc.). Ensayos de recuperación: métodos e interpretación (Jacob). Test de Barras (Slung test) métodos, usos, alcances y aplicaciones. Ventajas y limitaciones de los diferentes métodos.

UNIDAD 8. CONCEPTOS BÁSICOS SOBRE HIDROQUÍMICA

Propiedades del agua pura. Composición geoquímica de la corteza, el agua de mar y meteórica. Incorporación de elementos químicos, diferentes procesos y solubilidad. Hidroquímica: fundamentos y conceptos. Especies iónicas mayoritarias, minoritarias y trazas aportes según la génesis litológica. Evolución hidroquímica en las aguas de los acuíferos. Análisis químicos: criterios de precisión analítica para aguas subterráneas, validación de los mismos y representaciones gráficas. Clasificación del agua y aptitud para diferentes usos. Isótopos ambientales y radioactivos. Relaciones iónicas e índices hidroquímicos. Cartografía hidroquímica: usos y aplicaciones.

UNIDAD 9. MÉTODOS DE PERFORACIÓN EN AGUA SUBTERRÁNEA

Tipos de pozos (estudio, piezómetros, captaciones). Ubicación de pozos de estudio y captaciones. Necesidades y precauciones. Sistemas de perforación: Características principales. Sistemas de Percusión. Perforación en seco con rescate de testigos continuos. Perforación a percusión con inyección. Herramientas y métodos. Técnicas de avance y construcción de captaciones. Métodos de Rotación (directa e inversa). Herramientas y métodos. Técnicas de avance y control de operaciones. Métodos complementarios por presión de inyección. Técnicas de perforación. Maniobras de pesca y recuperación. Métodos de Roto-percusión. Lodos de inyección: tipos, composición y funciones. Métodos de perforación con presión de aire comprimido. Métodos de perforación poco convencionales. Ventajas y desventajas de cada método. Riesgos de operación y normas de seguridad en perforaciones.

UNIDAD 10 DISEÑO Y CONSTRUCCIÓN DE CAPTACIONES DE AGUA SUBTERRÁNEA

Registros de perforación: seguimiento salino y velocidad de avance. Métodos de Testificación geofísica de pozo, objetivos, utilidades e interpretaciones. Métodos Resistivos y Potencial Espontáneo. Método de Gamma natural. Método de perfilaje sónico y caliper. Métodos de perfilaje directos Sondas multiparemétricas. Sondas de video y endoscopia de pozos. Elementos y construcción de

captaciones y piezómetros. Tipos de Filtros, prefiltros y gravas de empaque. Materiales para encamisado de conducción. Técnicas de aislamiento y cementación. Detección de horizontes permeables y ubicación de filtros. Calculo de ranura de filtros en acuíferos clásticos. Criterios para el diseño de captación de agua subterránea. Elementos de diseño en acuíferos fisurados y kársticos. Alineación y Verticalidad de captaciones. Limpieza y Desarrollo de captaciones fines y criterios

UNIDAD 11.

LEGISLACION, INCUNBENCIAS, HABILITACIONES Y ESTUDIOS DE AGUAS SUBTERRANEAS. TIPOS Y ANALISIS DE PROYECTOS DE OBRA EN HIDROGEOLOGIA.

Jerarquía de la legislación de aguas en Argentina. Leyes de ejercicio de la geología con competencias sobre el agua subterránea. Incumbencias hidrogeológicas y superposición con otras profesiones. Código de aguas de provinciales Entidades de aplicación en recursos Hídricos Nacionales y provinciales. Habilitaciones y estudios hidrogeológicos (caso Pcia. Buenos Aires). Fundamentos del análisis de proyecto. Tipos de proyectos Hidrogeológicos. Diseño, confección y análisis de inversión de obras en Proyectos Hidrogeológicos.

BIBLIOGRAFÍA BÁSICA

La bibliografía básica aquí mencionada es de carácter consultivo (por parte del alumno) involucra fundamentalmente conceptos de Hidrogeología, Hidrología, Hidráulica de Acuíferos, Hidrogeoquímica e Ingeniería Hidrogeológica. Dada la extensa variedad de libros sobre estos temas la misma es referencial, sugerida y no excluye otro tipo de publicación que podría aportar más o mejores detalles o ejemplos o sobre aspectos relacionados a la disciplina.

- Aparicio, F.J. (1997).- Fundamentos de Hidrología de Superficie. Limusa, 303 pp.
- Appelo, C. y D. Postma (2005).- Geochemistry, Groundwater and Pollution. Balkema, 649 pp.
- Batu, V. (1998).- Aquifer Hydraulics. Wiley, 752 pp.
- Chow, V.T.; D.R. Maidment y L.W. Mays (1993).- Hidrología Aplicada. McGraw-Hill, 580 pp.
- Clark, I. y P. Fritz (1997).- Environmental Isotopes in Hydrogeology. CRC PRess, 350 pp.
- Custodio, E. y M. R. Llamas (Eds.) (1983) .- Hidrología Subterránea. (2 tomos). Omega, 2350 pp.
- Davis, S.N. y R. de Wiest (1966). Hydrogeology. Wiley 463 pp. (Traducción española: Ed. Ariel, 1971)
- Deutsch, W.J. (1997).- Groundwater Geochemistry: Fundamentals and Applications to Contamination, CRC Press, 221 pp.
- Domenico, P. A. y F. W. Schwartz(1998).- Physical and chemical hydrogeology. Wiley, 502 pp.

- Drever, J.I. (1997).- The geochemistry of Natural Waters. Prentice Hall, 3^a ed. 436 pp.
- Driscoll, F. G. (1986).- Groundwater and Wells. Johnson Sreens, 1089 pp.
- Fetter, C. W. (1999).- Contaminant Hydrogeology. Prentice-Hall, 2^a edición, 500 pp. (Reimpresión: Waveland Press, 2008)
- Fetter, C. W. (2001).- Applied Hydrogeology. Prentice-Hall, 4^a ed., 598 pp.
- Fitts, C. R. (2002).- Groundwater Science. Elsevier, 450 pp.
- Freeze, R. A.y J. A. Cherry (1979).- Groundwater. Prentice-Hall, 604 pp.
- Hall, P. (1996) .- Water Well and Aquifer Test Analysys. Water Resources Pub., 412 pp.
- Hiscock, H. (2005).- Hydrogeology. Principles and practice. Blackwell, 389 pp.
- Hornberger, G. (1998).- Elements of Physical Hydrology. Johns Hopkins University Press
- Kasenow, M. (2001).- Applied Ground-Water Hydrology and Well Hydraulics. Water Res. Pub. 2^a ed., 835 pp.
- Kasenow, M. (2006).- Aquifer Test Data: Evaluation and Analysis. Water Resources Pub. 396 pp.
- Kehew, A.E. (2001).- Applied Chemical Hydrogeology. Prentice Hall, 368 pp.
- Kruseman, G.P. y N.A. Ridder. (1990).- Analysys and Evaluation of Pumping Test Data. International Institute for Land Reclamation and Improvement, 377 pp.
- Langmuir, D. (1997).- Aqueous Environmental Geochemistry. Prentice-Hall, 600 pp.
- Lloyd, J.W. y J.A. Heathcote (1985).- Natural Inorganic Hydrochemistry in Relation to Groundwater. Claredon Press, 296 pp.
- López, C. (editor) (2001).- Manual de sondeos. Aplicaciones. E.T.S.I. Minas, 409 pp.
- Maidment, D.R. (1993).- Handbook of Hydrology. McGraw Hill
- Merkel, B. y B. Planer-Friedrich (2008).- Groundwater Geochemistry: A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems, Springer, 230 pp.
- Misstear, B.; D. Banks y L. Clark (2006).- Water Wells and Boreholes. Wiley, 498 pp.
- Price, M.(2003).- Agua Subterránea. Limusa, 341 pp.

475 pp.

- Raghunath, H.M. (2006).- Hydrology. New Age International. 477pp.
- Schwartz, F. W. y H. Zhang (2003).- Fundamentals of Groundwater. Wiley, 592 pp.
- Shaw, E.M.; K.J. Beven; N.A. Cappell y R. Lamb (2011).- Hydrology in Practice. Chapman and Hall, 543 pp.
- Singh, V.P (1992).- Elementary Hydrology. Prentice Hall, 973 pp.
- Viessman, W. y G. L. Lewis (2003).- Introduction to Hydrology. Pearson Education Inc., 5^a ed., 612 pp.
- Villanueva, M. y A.Iglesias (1984) :Pozos y Acuíferos. Técnicas de Evaluación mediante ensayos de bombeo, Instituto Geológico y Minero de España, 426 pp.
- Wanielista, M. (1997).- Hydrology and Water Quality Control 2^a edición. Ed. Wiley Ward, A.D. y S.W. Trimble (2004).- Environmental Hydrology. CRC Lewis, 2^a ed.,

- Watson, I. y A.D. Burnett (1995).- Hydrology. An environmental approach. CRC Lewis, 702 pp.
- Zhu, C. y G. Anderson (2002).- Environmental Applications to Geochemical Modelling, Cambridge Univ. Press, 284 pp.